Welcome
to
Reality Calculus 2
OVERVIEW OF RC 2
Diff. & Int. of exp and log functions
Integration Formulas
(Heavy Duty Drill)
Integration Applications
-
Geometric:
Volumes,
arclength & Surface areas
Centers of Mass
Moments of Inertia
Work and Electricity
L' Hopital's Rule
Conic Sections
Parametric Equations
Polar, Spherical & Cylindrical
Coordinates
Infinite Series
Calculus DIFFERENTIATION AND
INTEGRATION Table ( u = u(x))
1.
Dx(c) =
2.
Dx(c f(x)) =
3.
Dx(xn) =
4.
Dx(un) =
5.
Dx(f ± g) =
6.
Dx(fg) =
7.
Dx(f/g)=
8.
Dx(f(u(x)) =
9.
Dx(sin u) =
10.
Dx(cos u) =
11.
Dx(tan u) =
12.
Dx(csc u) =
13.
Dx(sec u) =
14.
Dx(cot u) =
15.
Dx(eu) =
16.
Dx(au) =
17.
Dx(ln u) =
18.
Dx(logau) =
19.
Dx(Arcsin u) =
20.
Dx(Arctan u) =
21.
Dx(Arcsec u) =
22.
Dx(sinh u) =
23.
Dx(cosh u) =
24.
Dx(tanh u) =
25.
Dx(sech u) =
26.
Dx(csch u) =
27.
Dx(coth u)
1.
º c dx =
2.
º c f(x)dx = cºf(x)dx
3. _xndx
=
for n -1
4. _unu'dx
= º un du =
for n -1
5.
º(f ± g)dx =
6. _sin u du =
7. _cos u du =
8. _sec2
u du =
9. _csc2u du =
10. _csc u cot
u du =
11. _sec u tan
u du =
12. _sec u du
=
13. _csc u du
=
14. º du/u
15. _eudu
=
16. _auu'dx
= º audu = ºeu ln a du =
17. _tan
u du =
18. _cot
u du =
19. _sin2u du =
20. _cos2u du =
21. _tan2u du =
22. _cot2u du =
23.
24.
25.
26. deg P ³deg Q, use long division first
27.
28. , use trig substitution
Calculus DIFFERENTIATION AND INTEGRATION Table
( u = u(x))
1.
Dx(c) = 0
2.
Dx(c f(x)) = c Dx( f(x))
3.
Dx(xn) = n xn-1
4.
Dx(un) = n un-1 u'(x)
5.
Dx(f ± g) = f '(x)
± g ' (x)
6.
Dx(fg) = f ' (x) g(x) + g ' (x) f(x)
7.
Dx(f/g)=(f '(x) g(x) - g '(x) f(x)) / (g(x))2
8.
Dx(f(u(x)) = (df/du)(du/dx) = f '(u) u '(x)
9.
Dx(sin u) = u '(x) cos u
10.
Dx(cos u) = - u '(x) sin u
11.
Dx(tan u) = u '(x) sec2 (u)
12.
Dx(csc u) = - u '(x) csc u cot u
13.
Dx(sec u) = u '(x) sec u tan u
14.
Dx(cot u) = - u '(x) csc2 u
15.
Dx(eu) = eu u '(x)
16.
Dx(au) = au u '(x) ln a
17.
Dx(ln u) = u '(x) / u
18.
Dx(logau) = u '(x) / (u ln a)
19.
Dx(Arcsin u) = u '(x) / (1 - u2) 1/2
20.
Dx(Arctan u) = u ' (x) / (1 + u2)
21.
Dx(Arcsec u) = u ' (x) / (u (u2 - 1)1/2)
22.
Dx(sinh u) =
23.
Dx(cosh u) =
24.
Dx(tanh u) =
25.
Dx(sech u) =
26.
Dx(csch u) =
27.
Dx(coth u)
1.
º c dx = cx + C
2.
º c f(x)dx = cºf(x)dx
3. _xndx
= xn+1 / (n+1) for n
-1
4. _unu'dx
= º un du = un+1 /(n+1) for n -1
5.
º(f ± g)dx = º f dx ± º g dx
6. _sin u du =
- cos u + C
7. _cos u du = sin u + C
8. _sec2
u du = tan u + C
9. _csc2u du = - cot u + C
10. _csc u cot
u du = - csc u + C
11. _sec u tan
u du = sec u + C
12. _sec u du
= ln | sec u + tan u| + C
13. _csc u du
= ln |csc u - cot u| + C
14. º du/u =
ln |u| + C
15. _eudu
= eu + C
16. _auu'dx
= º audu = ºeu ln a du = au / ln a + C
17. _tan
u du = - ln |cos u| + C or ln |
sec u| + C
18. _cot
u du = ln | sin u| + C
19. _sin2u du = (1/2) (u - (sin2u)/2 ) + C
20. _cos2u du = (1/2) (u + (sin 2u)/2) + C
21. _tan2u du = tan u - u + C
22. _cot2u du = - cot u - u + C
23. arc sin (u/a)
+ C
24. (1/a) arc sec
(u/a) + C
25. (1/a)arc tan
(u/a) + C
26. deg P ³deg Q, use long division first
27.
28. , use trig substitution