Math 125  Test 1    4 points each Jan 26, 2005

 


Circle answers where appropriate.

 

Use the function in the graph below for problems 1 & 2: 

 

1.  At which value(s) of x does the limit not exist ?

 

 

 

2.  Find  .

 

 

 

Use the piecewise continuous function below for problems 3 - 5

 

  , Find:

 

3.  

 

 

 

4. 

 

 

 

5. 

 

 

 

Use the Rules for Limits to evaluate:

If  and ,

 

6. 

 

 

 

 

7. 

 

 

 

 

8. 

 

 

Evaluate the limits.

 

9.    

 

 

 

 

10.  

 

 

 

 

 

Find the Vertical Asymptote(s) for:

 

11.  


12. 

 

 

 

 

13. 

 

 

 

 

Find the Horizontal Asymptotes for :

14.  

 

 

 

 

 

15. 

 

 

 

 

 

16. 

 

 

 

 

 

 

 

17.   If D represents the number of deer  amd W represents the number of wolves in the forest as a function of time,   what sign would you expect dD/dW to have?

 

 

 

 

 

 

 

 

18.  Give the graphical definition of the derivative of y = f(x) at the point (a, f(a)). You must use a complete sentences to get any credit at all.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.  Find the equation of the line tangent to f(x) = 4x2 - 3x - 1 at x = 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

20.  If the position of a rabbit is given by the function

 

x(t) = 2t2 - 4t +5, find her speed and when t = 4 s.

 

What is her acceleration at this same instant?


Differentiate the function: 

(means find f ' (x) ).

 

21.  f(x) =  3sin x

 

 

 

 

 

 

 

 

22. 

 

 

 

 

 

 

23.  f(x) = cos (¹)

 

 

 

 

 

 

24.  f(x) = 5cos (x)

 

 

 

 

 

 

25.   f(x) = x2 + tan x
5 Points Bonus:

Does this function have a vertical asymptote?  If so, find it, if not, explain why not.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5  Points Bonus:

Draw the f(x) vs x  and fÕÕ(x) vs x  (assume the object starts at the origin ) graphs for the given fÕ(x) vs x graph.