Math 125  Test 1    4 points each Jan 29, 2004

 

Work problems on the paper provided, circle answers where appropriate.

 


For the function in the graph: 

 

1.  At which value of x does the limit not exist ?

 

2.  Find  .

 

Consider the piecewise continuous function

 

  , Find:

 

3.  

 

4. 

 

5. 

 

If  and ,

use the Rules for Limits to evaluate:

 

6.

7. 

8. 

Evaluate the limits.

 

9.    

 

10.  

 

11. 

 

Find the equation(s) of the Vertical Asymptote(s) for:

12. 

 

13.  

 

14. 

 

15.   If D represents the number of deer  amd W represents the number of wolves in the forest as a function of time,

a.  What sign would you expect dD/dW to have?

b.  What sign would you expect dW / dD to have?

 

16.  Give the algebraic definition of the derivative of y = f(x) at the point (a, f(a)). You must use a complete sentences to get any credit at all.

 

17.  Find the slope of the line tangent to f(x) = 4x2 - 3x - 1 at x = 1.

 


18.   Draw the f(x) vs x  and fÕÕ(x) vs x  (assume the object starts at the origin ) graphs for the given fÕ(x) vs x graph.

 

 

 

 

 

 

     

 

 

 

 

 

 

 

Differentiate the function:  (means find f ' (x) ).

 

19.  f(x) = x + 1

 

20.  f(x) = 4 x2 - 3 x - 6

 

21.  f(x) =  sin x

 

22. 

 

23.  f(x) = x2 sin (x)

 

24.  f(x) = cos (5x2)

 

25.